Consider $f (x) = | 1 - x | \,;\,1 \le x \le 2 $ and $g (x) = f (x) + b sin\,\frac{\pi }{2}\,x$, $1 \le x \le 2$ then which of the following is correct ?
Rolles theorem is applicable to both $f, g$ and $b =\frac{3}{2}\,$
$LMVT$ is not applicable to $f$ and Rolles theorem if applicable to $g$ with $b =\frac{1}{2}\,$
$LMVT$ is applicable to $f$ and Rolles theorem is applicable to $g$ with $b = 1$
Rolles theorem is not applicable to both $f, g$ for any real $b.$
If the function $f(x) = a{x^3} + b{x^2} + 11x - 6$ satisfies the conditions of Rolle's theorem for the interval $[1, 3$] and $f'\left( {2 + \frac{1}{{\sqrt 3 }}} \right) = 0$, then the values of $a$ and $b$ are respectively
If from mean value theorem, $f'({x_1}) = {{f(b) - f(a)} \over {b - a}}$, then
Let $f(x)$ satisfy the requirement of lagranges mean value theorem in $[0,2]$ . If $f(x)=0$ ; $\left| {f'\left( x \right)} \right| \leqslant \frac{1}{2}$ for all $x \in \left[ {0,2} \right]$, then-
Let $y = f (x)$ and $y = g (x)$ be two differentiable function in $[0,2]$ such that $f(0) = 3,$ $f(2) = 5$ , $g (0) = 1$ and $g(2) = 2$. If there exist atlellst one $c \in \left( {0,2} \right)$ such that $f'(c)=kg'(c)$,then $k$ must be
Let $f$ be any function defined on $R$ and let it satisfy the condition
$|f( x )-f( y )| \leq\left|( x - y )^{2}\right|, \forall( x , y ) \in R$ If $f(0)=1,$ then